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The nonlinear stability of a viscous film flowing steadily down an inclined plane 
is investigated by the method of multiple scales. It is shown that the super- 
critically stable, finite amplitude, long, monochromatic wave obtained by Lin 
(1969, 1970, 1971) is stable to side-band disturbances under modal interaction 
if the bandwidth is less in magnitude than 6 ,  the ratio of the amplitude to the film 
thickness. Near the upper branch of the linear neutral-stability curve where the 
amplification rate ci is O(e2) ,  the nonlinear evolution of initially infinitesimal 
waves of a finite bandwidth is shown to obey the Landau-Stuart equation, Near 
the lower branch of the neutral curve, the nonlinear evolution is stronger. An 
equation is derived for describing this strong nonlinear development of rela- 
tively long waves. In practice, disturbance of this type clusters in the form of a 
hump which cannot be constructed only by the first few harmonics. 

1. Introduction 
The problem of finite amplitude stability of a viscous liquid layer flowing down 

an inclined plane has been’studied by Benney (1966), Lin (1969,1970) and Gjevik 
( 1970). The wave motions in such a liquid film were also studied, not in the context 
of stability, by Kapitza & Kapitza (1949), Anshus (1965), Mei (1966) and many 
others. A list of useful references can be found in the work of Duckler (1972). 
In  all the stability analyses mentioned above, only disturbances of the same mode 
were considered. On the other hand, it is a knownexperimental fact that to control 
the wave motion precisely at a given mode is an extremely difficult task. In 
laboratories, the presence of side-band disturbances can hardly be avoided. Thus, 
the question naturally arises whether such a filtered finite amplitude wave is 
stable with respect to side-band disturbances, which, in general, cause ‘resonant ’ 
modal interactions. Partial answers to this question have been offered recently, 
for the case of parallel flows with rigid boundaries, by Stewartson & Stuart 
(1971), Hocking & Stewartson (1971, 1972), Hocking, Stewartson & Stuart 
(1972) and DiPrima, Eckhaus & Segel (1971). The purpose of this work is to 
answer the same question for the case of a parallel flow with a free surface and to 
elucidate the mechanism of nonlinear stability. 

The presence of the free surface introduces additional interesting effects of 
surface tension and gravity. These effects change the character of the instability 
dramatically in a parallel flow. While the instability of the parallel %ow between 
two rigid walls takes the form of short shear waves the instability in a liquid 
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film takes the form of long gravity-capillary waves a t  the relatively small Rey- 
nolds number. Another interesting feature of the film instability is that there 
exists no finite critical wavelength according to the linear theory, in contrast 
to the case of rigid boundaries. The linear theory predicts the instability to 
take place in the form of an infinitely long wave. On the other hand, surface waves 
of finite wavelengths were observed, as the consequence of the instability, by 
Kapitza & Kapitza (1949) and Binnie (1957). This led to the conjecture that the 
observed waves are the most amplified waves with the wavelength A, predicted 
by the linear theory. However, referring to the case of a vertical film, Benjamin 
(1957) pointed out that “one can scarcely expect waves to appear with a strictly 
uniform and distinct periodicity, because under all conditions infinitesimal waves 
with a wide range of wavelengths are unstable, and the wave with length A, 
comes into prominence only through a rather uncritical selection process depend- 
ing on differences in the rates of amplification of different wavelengths. The 
ultimate state of the amplified waves is, of course, determined largely by non- 
linear effects which remain unknown”. This statement is consistent with the ex- 
periment of Kapitza & Kapitza (1949), who found that distinctively periodic 
waves could not be observed unless the disturbances were introduced a t  precisely 
controlled frequencies. Thus, the present author (1969, 1970) was led to investi- 
gate the nonlinear evolution of the Benjamin-Yih wave of a given mode. In  
t,he present work, the nonlinear instability to disturbances of a finite frequency 
bandwidth is studied. 

I n  the next section the equation of motion of the free surface is obtained. On 
the basis of this equation the stability of a viscous liquid film with respect to 
disturbances of finite amplitude and finite bandwidth is then investigated by 
the method of multiple scales. The nonlinear evolution near the upper branch of 
the neutral curve of the initially infinitesimal but exponentially growing waves 
of different modes within a narrow band is shown to obey the modified Landau- 
Stuart equation. Near the lower branch of the neutral curve the modal inter- 
action is stronger and the corresponding nonlinear development cannot be 
adequately described by the modified Landau-Stuart equation. An equation 
which describes this strong modal interaction is derived. 

2. Equation of the free surface 
The following derivation of the governing equation of the free surface follows 

closely the formulation of Benney (1966). Consider a layer of an incompressible 
viscous fluid flowing down a plane inclined a t  an angle ,8 to the horizontal. The 
motion of the fluid is governed by 

V . V  = 0, (1) 

av - + ( V . V ) V  = --vp+vv2v+g, 1 

at P 

where V is the velocity vector, t the time, p the pressure, g the gravitational 
acceleration, v the kinematic viscosity, p the density, V the gradient operator 
and V2 the Laplacian. Solution of the above equations with the conditions of 
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no slip a t  the plane and zero stress at  the free surface gives the following primary 
flow: 

;ii = (gsinp/Zv) (2hoy-y2)  (8 = 0 ) ,  

P = Po - PS cos P(Y - ho), 

where U and G are respectively the velocity components in the directions parallel 
to and normal to the bottom plane, 1, the pressure in the film, po  the atmospheric 
pressure, ho the constant film thickness and y the distance measured perpendicu- 
larly upward from the inclined plane. The stability of the above primary flow is 
again governed by ( 1) and (2). The boundary conditions are the no-slip condition 
at the plane and the vanishing of the tangential stressps and the total normal force 
per unit area at t,he free surface y = h (x), i.e. 

P.9 = 0,  

where T is the surface tension, p, the normal stress and the subscript x denotes 
partial differentiation with respect to the distance in the direction of the flow. 
Similarly, the subscript y will be used in the following to denote partial 
differentiation with respect to y .  ps andp, are related to the velocity field through 
the Cartesia.n stress tensors by 

P8 = Pl2 cos 2Y + H P 2 2  - Pl, 1 sin 2Y 

p n  = p2, cos2 y +pll sin2 y -p12 sin 2y, 

tan y = hx, 

Pll = -p + 2pvu,, P 2 2  = - p  + 2PVVY, P12 = PV(UY + VJ, 
where u and v are the x and y components of the velocity vector V. In addition, 
the kinematic boundary condition at the free surface 

h,+(E+U')hx-v' = 0 

must also be satisfied. In  the above equation, primes denote perturbations from 
the primary flow U. 

Introducing a perturbation stream function $' which satisfies the continuity 
equation ( l ) ,  i.e. u' = $; and v' = - $,& and then normalizing x with h/2n, h 
being the wavelength, y and h with h,, and its perturbation p' with pgh, sin p, 
t with h/27rU, where U = ZL max, and $' with Uh,, we have from (2) and its bound- 
ary conditions the following set of equations: 

@y2/2/u = aR{$,y,+ (U + $,I $xyy - (%u + @YYJ 3//xl-  2WXZYY 

+ a3R{9+xxt+ (U + @?I) $zxx - @x$xxu> - ~ 4 $ x x x x >  (3) 

= $, = 0 a t  y = 0, (41, ( 5 )  

72t+(U+$y)hx+@x = 0 a t  y = h, ( 6 )  
27-2 
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(U,+$;dy-a2$x,)(1-a2h~)-4u2$~h,  = 0 at y = h, 

are respectively the Reynolds number, the Weber number and the number of 
waves in a distance Z-rrh,. It should be pointed out that  all variables appea,ring in 
(3)-(10) are dimensionless and should not be confused with the dimensional 
variables appearing in equations prior to (3).  The above set of equations (3)-( 10) 
is identical to that obtained by Benney (1966) except for (8 ) ,  corresponding to 
Benney's equation (28)) in which there is an error in the first term. 

The solution to the above system will be expanded in terms of the small para- 
meter a (wavelength long compared with film thickness) as follows: 

34X,Y, t )  = z an@%5y,t), 
n=O 

with 
$(n) = A(;)(z,t)y". 

m=0 

The first two coefficients in the above series are chosen to be zero so that the 
boundary conditions (4) and (5) are satisfied. The rest ofthe coefficients are deter- 
mined by demanding that the resulting series satisfies (3), (7), (8) and (9) order by 
order. Substitution of the series solution thus obtained up to O(a2) into the kine- 
matic boundary condition (6) then leads to (cf. Benney 1966) 

a a 
h, + W )  h, + Cmd h, + C(h) hXXZ1 + a2z [m) h: + E(h) hx, + *(h) hzx, 

+G(h) h,ht,,,+H(h)h~,++(h)h~h,,l +O(a3)  = 0, (11)  
where 

A(h)  = 2h2, R(h) = &Rh6-$cot/3h3, C(h) = $a2 Wh3, 
D(h) = _l_OLCR2h9 + 1L.h3 - 3 2 R cot PF.6, 

315 3 TS 

E(h) = $$ R2h10 + 2h4 - R cot ph7, 

F(h) = $$a2RWh7, 

H ( h )  = J$a2RWh6, 

G(h)  = J$a2RWh6, 

I (h )  = 3;a2RWh5. 

The above results have been checked independently by Mr M. V. Krishna. 
Equation (1 1)  with W = 0 in its coefficients corresponds to Benney's equations 
(38)-(44). Upon comparison we found that the second terms of the right sides of 
his equations (43) and (44) contain minor algebraic errors. They should be 
- 32:t R2h9 and - %$iXRzh8 respectively. 
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3. Modal interactions 
While (1 1) is valid for long waves of arbitrary amplitude, solutions are not 

at all easy to obtain. Therefore we shall confine ourselves to the case of weakly 
nonlinear wave motion which perturbs the free surface only slightly. Thus, we 
write 

Substituting the above into (1 1) and expanding the coefficients in (1 1) about 
y = 1, we obtain 

h = l + q ,  vg1. 

a a 
= - (A'y + *Arrqz) qz - a ax [(B'q + $B"T/') qz + (C'q + iC"r2) q,,] - a2 

x [(D + D'q + &D"y2) 7: + (E'q + +E"q2) qzz + (3"y + tF"q2)  qzmz 
+ (G + G'r + iG"y2) yzqzzz + ( H  + H'r + &H"q2) qiZ 

+ (1 +1'r + ir"Y2) r;vzzl + O(a3q, r", (12)  

and terms O(q3)  and higher are omitted in the Taylor series expansions; primes 
denote differentiation with respect to h and all coefficients, A ,  B and their 
derivatives etc., stand for A(1), B(1), etc. Neglecting the nonlinear terms in 
(12), we obtain the governing equation for the linear stability problem: 

Lor = 0. 

q = r exp [i(x - c t ) ]  + F exp [ - i ( x  - ct ) ] ,  

This equation has the normal-mode solution 

(13) 

is an arbitrary multiplica- where the overbars denote the complex conjugate, 
tion factor independent of x and t ,  and c is the eigenvalue, given by 

c = C,+iCi = Z+ia(B-C)-a2(E-P).  

Noting that a2W = O( 1) in laboratory situations and substituting the values for 
B, C, E and F into the above equation, we have 

C, = ~ - U ~ ( ~ & R ~ + ~ - $ ! R C O ~ / ~ - & ~ R W ) ,  63 

ci = ~(+"R-@t/3-#a~W), 

which is the eigenvalue obtained by Benjamin (1957) and Yih (1963) from the 
solution to the Orr-Sommerfeld equation. Note from the expression for the wave 
speed c, that the long waves in a liquid film are only weakly dispersive and travel 
at approximately twice the speed of the unperturbed surface. ci is the linear ampli- 
fication factor. The infinitesimal disturbances grow or decay exponentially ac- 
cording as ci 0. ci = 0 gives the linear neutral-stability curve, which consists of 
the straight line a = 0 and the parabola 

~ ~ R - $ c o t P - & 2 W  = 0. 

These two lines intersect at  the bifurcation point a = 0, R = gcotp = R,. The 
neutral curve for water at  15 "C with /3 = 90" is shown in figure 1. 



422 
0.14 

0.13 

0.10 

0.08 

a 
0.06 

0.04 

0.02 

S. P. Lin 

0 3 4 6 8 10 

R 
FIGURE 1. Stability curves; = go”, W = 463.3. x , Kapitza’s experiment. 

Benjamin (1961) showed that the asymptotic behaviour at  large times of 
linear two-dimensional dispersive waves in an unsta,ble liquid film is given by 

+--it , (rTp - t t e x p  -- 1 [ at a 
x’2 a, 

where a is a positive constant and x’ is the distance measured in a frame moving 
a t  the linear group velocity. The same asymptotic behaviour was found by 
Stewartson & Stuart (1971) for plane Poiseuille flow. The above expression states 
that while the amplitude of the linear wave is amplified by a factor c)e  in a time of 
order c i l  the dispersion of thewavesleads to the formation of awave packet whose 
characteristic length is O(c,*). Near the linear neutral curve this characteristic 
time, being O(c;l), is large. Of course, before this time is reached the nonlinear 
effects become important. However, around the outskirts of the wave packet, 
where z’ = O(c;*), the wave amplitudes remain small. Thus one expects a slow 
nonlinear modulation over a time O(E-2) and over a distance O(E) ,  where E is a 
small parameter independent of a and such that cd = O(e2). This expectation, 
together with the anticipation that the wave packet may travel at  a group 
velocity of order one, lead one to define the following slow variables: 

X = EX, TI = E t ,  T = e2t. 

Now, the wave amplitude will be expanded as 

?(a, x, t ,  x, TI, T) = q1 + €2V2 + “3V3 + . . . . 
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Substitution of the above expansion with 

-+- + €- + €2- -+- + B -  

into (1 2) gives 

(Lo + eLl + e2L2 + . . .) (ql + @q2 + s3q3 + . . .) = nonlinear terms, (15) 

in which 

Thus, the equation for the O(B) solution is Lor, = 0, the solution of which has 
already been given in (13). However c in (1 3) must be replaced by c,, since in the 
vicinity of the neutral curve where ci = O(e2) ,  the function exp (tit) is slowly vary- 
ing and must be absorbed in r = r ( X ,  T,, T). We now investigate the nonlinear 
evolution of the unstable linear waves in the region where ci = 0 ( e 2 ) .  

It follows from (12)-( 15) that the O(e2) solution is to be obtained from 

~ , q ,  = - [& rexp[i(x-c,t)l 

+ Q1 r2 exp [2i(x - c,t)] + complex conjugate, (17) 

where H ,  = H,, + iHZi = [Z + a2(SP - 3E)]  + i24B - ZC), 

Q1 = -4i+4a[~R-cotP-+a2W] 

+ 2i+a2[%?. + 2816 R2 - 296 &! cot p - 5&&2R W ]  . 
3 1 5  4 5  

The first term on the right side of (17) is of the same form as the complementary 
solut.ion of the equation. This secular term leads to a steady growth of the 
amplitude over a time O(B-,). The necessary condition for the existence of a 
finite amplitude periodic motion with slow modulation overt = O(@)  is then 

( a p ,  + H 2 a p x )  r = 0. 

This equation possesses the normal-mode solution I? = [ ( T )  exp [i (X-H,T,)] .  
We consider modal interaction near the linear neutral curve such that 

H~~ = 2(ci-++a3w) = o(+ 
For all experiments cited at  the end of this section, = O(s). This being the 
case, exp [HZiTl] varies as slowly as exp [tit] and can be absorbed in [ ( T ) .  Then 
the secular condition leads t o  the requirement that the wave envelope must pro- 
pagate at  the speed H2,, which turns out to be the group velocity, since 

d(ac,)/da = 2 + ( 5 3  - E) a 2  = HZT. 

That is to say I? must hawe the functional form 

r = r(X-H,,T’,T). 
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With the secular condition sa,tisfied, the solution of (17) is easily found to be 

q2 = H ,  r2 exp [ 2 i ( z  - c,t)] + SIP exp [ - 2 i (x  - c,t)], 
where 

H ,  = [2(4C-B)&,,+3a(5P-E)&,i]+i[2(4C-B)$1,I:-3"(5F-E)&,,]  
2a[ (4C - B)2 + 9a2( 5P - E)2] 

? 

in which the subscript r or i stands for the real or imaginary part respectively. 
Similarly, from the order e3 terms, we have 

Lor3 = - ~ - 2 ~ o r l - ~ l r 2 - ~ 2 ~ l - ~ ' ~ r l r 2 z + r 2 r ~ ~  - &A"r2,91r-CI.[B'(r,r221 

+rlZV1ZZ) + &B"r?r,zz + 2B'71zr2r + ~"rlrlsrlZ + C'(r172zsrr + 72r1srrz) 
1C" 2 + f 9lP1zrrz + C'(r1zrzzzz + rzz71zzs) + Q"71?llxrlzmI. 

It should be pointed out that there are O(e3) contributions from L,eq,. The term 
a(Ba2/ax2 + Ca4/ax4) in Lo leads to 

-ea(.B-C) [r exp{i(x-c,t)}+~exp(-i(x-c,t)}], 

which is O ( 8 )  in the vicinity of the linear neutral curve where ci = 0(e2), since 
a(P- C) = ci. Some of the modal interactions indicated on the right side of the 
above equation lead to secular terms. Imposing the secular condition, we have 

- C ~ ~ ' - ~ ~ + L ~ ~ ~ + L ~ ~ ~ + ~ ( A ' H ~ + & A ' ' )  r2F++( -B'H-JB" 
+ 10C'H,+*C") r2TT = 0. 

-4pplying the operators L, and L,, we can write the above equation as 

where c! = 6-26. 

a r p  + J, a2qax2  - c;r + (J, + i ~ , )  rT = 0, (18) 

and = r[ (X-H, ,T l ) ,TI ,  
J1 = a(B- SC), 
J2 = - A'Hli + a[+(C"-B") + (lOC' - B') H1,], 
J4 = A'H1,+~Ar'+aH1,(lOC'-B'). 

Equation (18) has been derived by DiPrima et al. (1971), Stewartson & Stuart 
(1971), Newel1 & Whitehead (1969) and Segel (1969) for other flows. This equa- 
tion with ci = 0 also describes a light beam in a nonlinear medium (Talanov 1965; 
Kelly 1965). A complete study of (18) is beyond the scope of the present work. 
We shall, however, use ( 1  8) to study the nonlinear evolutionof a filtered wave and 
its stability to side-band disturbances under modal interactions. For a filtered 
wave, there is no spatial modulation and the second term in (18) vanishes. The 
solution of this equation can be written as 

rl = (rlFl)+exp [ ~ B ( T )  T I .  (19) 

The initial condition is I',T,(T) = 0 at T = -a. The explicit expressions for 
FIFl(T) and B(T)  are easily found to be 

ci exp [2c;(T - To)] e2r P T '( = 1+J2exp[2c~(T-T,)] 

and B(T) = - 5 TTllrl(T)dT, 
T IT. 



Finite amplitude side-band stability of a viscous jilm 425 

Data 

Water at 16 'C, 
ci = 0.155, 
tc = 0.092, 
R = 8-07, 
W = 463.3 

Alcohol at 15 O C ,  

ci = 0.174, 
tl = 0.144, 
R = 5.04, 
W = 107.2 

Water at 19 O C ,  
ci = 0.121, 
cz = 0.066, 
R = 6.60, 
7.17 = 616.7 

Authors Cr 

Gjevik (1970) 2.21 

Present theory 1-81 
Kapitza & Kapitza (1949) 1-76 

Lin (1971) 1.78 

Kapitza & Kapitza (1949) 1.67 

Lin (1971) 1.73 
Present theory 1.80 

Binnie (1957) 
Present theory 
Lin (1969) 

2.34 
1.72 
2.01 

TABLE 1. Waves in liquid films, /3 = 90". 

r 

0.350 
0.160 
0-174 
0.225 

0.163 
0.178 
0.22 1 

where To is an arbitrary time constant reflecting the arbitrary initial phase. 
Equations (20) describe the nonlinear modification of the amplitude and the 
phase speed of the exponentially growing initial disturbances. As T -+ 00, an 
equilibrium amplitude of value cJJZ and the corresponding reduction in wave 
speed of magnitude - J41'lF1(m) are reached. It should be pointed out that this 
equilibrium value may be reached only in a region where the values of a, ci and R 
are such that Jz is positive. For example, when the surface tension is zero, J ,  < 0 
and thus no supercritical stability is possible. On the basis of (20), theoretical 
predictions are made for comparisons with the experiments of Kapitza & Kapitza 
and Binnie which were quoted in the work of Lin (1969,1971 ). 

In the previous work of Lin, the solution was expanded in terms of eigen- 
functions. The unmodulated Landau-Stuart equation was assumed to be valid 
a priori and the Landau second coefficient was obtained as an eigenvalue with 
the aid of a Poincarh eigenvalue stretching of the wave speed. In  the present 
work, the shallow-water expansion is applied to the viscous film following the 
work of Benney (1966). This expansion formalism allows us to study the modal 
interaction more readily and yields the nonlinear Schrodinger equation (18) as a 
necessary condition for supercritical stability. 

It may be seen from table 1 that the present theoretical predictions compare 
very well with both the known theoretical results obtained with an entirely 
different method and the above-mentioned experiments. It should be pointed out 
that the values of cr, ci and R obtained by Lin (1969, 1971) differ by factors of 3 
and 4 respectively from those quoted in table 1.  This difference arises from the 
different normalization factors used in the present analysis. In table I 

r = [ ( ~ + ~ m a x ) - ( 1 - ~ m i n ) I / [ ( ~ + ~ m a ~ ) + ( ' - ~ m i n ) l ,  

where rmax and rmin are obtained from the first two terms of ( 14) with rlrl = e;/Jz. 
The wavenumbers urn corresponding to the maximum linear amplification rate 
in each experiment are also given. Note that the waves observed by Kapitza 
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& Kapitza are not the most amplified waves according to the linear theory. 
Gjevik's theoretical results are also included for comparison. In  Benney 's 
(19GG) analysis, the surface tension is neglected and thus no supercritically stable 
wave motions are predicted. We now proceed to study the stability of these pre- 
dicted supercritically stableJiEtered waves to side-band disturbances of bandwidth 
Ke. Thus, we let? 

J? = r,(T) + [Gr,(T) exp ( i K X )  + GI',(T)exp ( - i K X ) ]  exp ( - iQT), 

where Q = c;J4/J2, I',(T) is the limiting solution of (18) as t + 00 for the filtered 
wave, i.e. l?,(T) = (ct/J2) exp [ - iQT], and 8 < 1. Substituting this expression 
into (18), we obtain from the coefficients of 

Gexp [i(KX - QT)] and Gexp [ - C(KX + QT)]  

where 
All = cl-J1K'+ic;(J4/J2), 
A12 = (J2+iJ4)(4/JJ,  

A,, = c;- J1K"iic;(J,J2), 
A21 = (J2-iJ4) (c;/JZ). 

Here we consider only the linear stability of the stable filtered wave and write 
the solution of (2 1)  as 

= [::I enlT, 

where c2 and c3 are constants which are indeterminate within the framework of 
linear analysis. A nonlinear analysis of r2 and r3 is not intended here. The eigen- 
value A, in the above solution is given by 

= Q[- (A22+AlA * ((A22+A11)2-44(A11A22-A21A12))31. 

The condition for stability to the side-band disturbance is A, < 0. It follows 
from (22) that this condition can be written as 

J,K2 < c; T c;. (23) 

Prom the definition of J1, we have 

J1 = c i - 5 ~ 8  = C~-+!-LX~W. 

For all three experiments listed in table 1, J1 < 0. Thus the above inequality is 
satisfied for all K = O( 1). Consequently, the observed waves are stable to side- 
band disturbances of bandwidth O(E) .  Hocking & Stewartson (1972) found nu- 
merically in their study of plane Poiseuille flow that the modal solution of (1  8) 
appears to be stable when J1 < 0 and J,/J, N 1. However, they also found that 
the stable modal solution with J1 < 0 is never approached if J4/J2 - 10. This is 
inconsistent with our result (23), which states that if J1 < 0 the stable modal solu- 
tion can be reached regardless of the value of J,/J,. This discrepancy probably 
arises from the fact that the initial disturbances used in their numerical computa- 
tion are of finite amplitude while the side-band disturbances used in this study 

f The exponential factor in this expression was suggested by Professor K. Stcwartson to  
remove an error in the original manuscript. 
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are infinitesimal. This difficulty does not arise if we apply (23) only to the liquid 
film where J4/J2 N 1 according to the explicit expressions of J4 and J, in (18). 
Then both (23) and the numerical study of Hocking & Stewartson predict modal 
stability for J1 < 0 and J4/J2 N 1. 

For sufficiently long waves, J, may become positive. However, it is shown in 
the next section that, when J, > 0, ( 1 8 )  is no longer appropriate for describing 
the nonlinear evolution of such long waves. 

4. Long waves 
It is seen from the expression J, that near a = 0 

aJ2 N -v [&(R - R,) - a2W]-l. (24) 

Thus, at  a = 0, J2 is negative as long as R - R, > 6,6 -+ 0 + . This implies that the 
Landau limit does not exist a t  a = 0. Therefore, i t  is necessary to look more closely 
into the region where a + 0. By use of simple algebra, it  can be shown that for a 
given flow the curves R = constant and ci = a sufficiently small constant inter- 
sect, in general at two points A and B (cf. figure 1). The point A lies outside and 
the point B lies inside the region where the Landau limit exists, i.e. J, < 0 a t  A 
and J, > 0 at  B. It can also be shown that J, < 0 at B and J1 > 0 at A .  Now, since 
B is sufficiently close to the upper branch of the neutral curve such that 

ci = O(e2), J1 < 0 and J, > 0, 

then as was shown in the last section not only is the filtered wave at  the point B 
supercritically stable but also this filtered wave is stable to side-band distur- 
bances with bandwidth O(e).  On the other hand at point A,  even if A is so close 
to the lower branch of the neutral curve a = 0 that cd = O(e2),  there can be no 
supercritically stable solution to (18) since J, < 0 and J1 > 0. Thus we are led to 
look for equations which describe the nonlinear evolution of these long waves. 
Note that the expansion for q is singular at a = 0 if we regard e and a as indepen- 
dent parameters, since 9, N I/a. However if B were dependent on a, B = O(an) 
say, then the expansion obtained for 9 would be bounded as a -+ 0 if n > 1. Thus 
in the region a +- 0, the order of magnitude of c relative to a must be determined 
a priori. Consider the case e = a,. Then to order 8, we have from (1 2) 

(a/at + 2a/ax) 7 , = 0. 

The solution of the above equation can be written as 

where 8 = x - 2t and T = ant with n > 1. The second-order solution must satisfy 

If R - R, < O(a) and thus ci = &a[R - R,] < O(a2) = O(e) ,  the diffusion term 
in the above equation can be neglected and near the lower branch of the neutral 
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curve the resulting equation with n = 2 describes the nonlinear evolution over a 
time 0(r1) = O(a-,). If R - R, = O(a) and thus e, = O(a2) = O(s) ,  the diffusion 
term must be retained in (25) and the resulting equation with n = 2 describes 
the strong modal interaction of long waves near the neutral curve, where 
ci = O(e) .  In the limit a -+ 0 the above equation is reduced to 

af azf a3f  af - alp -t&(R-Rl)a-l- +E- +4f- = 0. 
8x2 ax3 ax 

Note that no vestige of surface tension can be found in the above equation. 
This is due to the fact that a -+ 0 implies h +- 00, which in turn means that the 
wave elevation changes appreciably only over an infinitely large distance. 
Consequently the surface curvature approaches zero and the effect of surface 
tension cannot be exhibited. However there are infinitely long waves (solitary 
waves for example) whose amplitude varies appreciably over a distance A, 
much smaller than the wavelength. For these cases A, instead of h must be used 
as a normalization factor and 5s a result W a  or even Wa2 may be of order one. 
Therefore, for these waves, (25) with n = 2 is a more appropriate equation to use. 

Thus (18) is the appropriate equation for the description of the weak nonlinear 
evolnt*ion of relatively short waves near the upper branch of the neutral curve 
where ci = O(c2) .  In practice, these waves can be constructed from the first few 
harmonics as is the case in the experiments cited in the last section. Near the lower 
branch o f  the neutral curve a = 0,  even where ci < O(a2) = O(e) the modal 
interaction is stronger. Equation (25) or (26) without the diffusion term is then 
the governing equation of the nonlinear evolution. Farther away from the neutral 
curve where ci = O(c)  the diffusion term in (25) or (26) becomes important. For 
example, the ‘single wave’ observed and so termed by Kapitza & Kapitza 
takes the form of a smooth hump. It is obvious that this hump, being far from 
sinusoidal, takes more than several harmonics to construct. Moreover, because 
of its extremely long wavelength, the hump must include long-wave components 
such that a -+ 0. Thus (25) or (26) is the appropriate equation for the description 
of  the single wave. On the other hand, the waves given in table 1 are of relatively 
short wavelength such that a -+ [4(R, - R,)/5 W]*, the a on the upper branch of 
the neutral curve. Therefore the modified Landau-Stuart equation is sufficient 
for the description of these waves as is evident from the good comparison given in 
table 1 between the theoretical results based on the Landau-Stuart equation and 
the experimental results. No numerical results based on (25) or (26) are yet avail- 
thlsle for comparison with the single waves observed by Kapitza & Kapitza. To 
summarize the analysis given in the last two sections, we use for illustration the 
numerical results corresponding to the experiment with water of Kapitza 
& Kspitza. This particular numerical result is displayed in figure 1. The linear 
neutral curve ci = 0 calculated from the eigenvalue in (13) divides the a, R plane 
into two regions. According to the linear theory, the film is stable or unstable at 
any given R depending on whether the wavelength of the disturbance lies above 
or below the neutral curve. Similarly the curve J, = 0 divides the a, R plane 
into two regions. J, > 0 in the region above the curve J, = 0. In  the rest of the 
a, R plane J, < 0. Since the wave observed by Kapitza & Kapitza corresponds 
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to a point lying below ci = 0 but above J, = 0,  where J, > 0, the filtered wave 
a,ttains nonlinear stability according to (20). The nonlinear modulation of this 
filtered wave due to the neighbouring side-band disturbances is governed by (1 8). 
Moreover, the filtered wave is stable to side-band disturbances of bandwidth O(s) 
according to  (23). 

Finally we point out that (26) has also been used to describe the wave propa- 
gation on liquid-filled elastic tubes (Johnson 1970), the weak shock profile in 
plasma (Grad & Hu 1967) and the undular bore in an open channel flow (Johnson 
1972). 

This work was completed while the author was a visitor a t  the Department of 
Applied Mathematics and Theoretical Physics at  the University of Cambridge. 
The author wishes to thank Professor G. K. Batchelor for his hospitality. This 
work was supported by a National Science Foundation Grant. The author wishes 
to t,hank Dr C. C. Mei for stimulating discussions. The author is grateful for tche 
useful criticisms of Professor K. Stewartson. 

R E F E R E N C E S  

AXSHUS, B. E. 1965 Finite amplitude wave flow of a thin film on a vertical wall. Ph.D. 
thesis, University of California, Berkeley. 

BENJAMIN, T. B. 1957 J. Fluid Mech. 2, 554. 

BENJAMIN, T. B. 1961 J .  Fluid Mech. 10, 401. 
BENNEY, D. J. 1966 J .  Math. (e: Phys. 45, 150. 
BINNIE, A.M. 1957 J .  Fluid Mech. 2, 551. 
DIP=, R. C., ECKHAUS, W. & SEGEL, L. A. 1971 J .  Fluid Mech. 49, 705. 
DUCKLER, A. E.  1072 Prog. Heat & Mass Transfer, 6, 207. 
GJEVIK, B. 1970 Phys. Fluids, 13, 1918. 
GRAD, H. & Hu, P. N. 1967 Phys. Fluids, 19, 2596. 
HOCKING, L. M. & STEWARTSON, K .  1971 Mathernatika, 18, 219. 
HOCKING, L. M. & STEWARTSON, K. 1972 Proc. Roy. SOC. A 362, 289. 
HOCKING, L. M., STEWARTSON, K. & STUART, J. T. 1972 J .  Fluid Mech. 51, 705. 
JOHNSON, R. S. 1970 J .  Fluid Mech. 42, 49. 
JOHNSON, R. S .  1972 Phys. Fluids, 15, 1693. 
KAPITZA, P. L. & KAPITZA, S.  P. 1949 Zh. Eks. Teor. Fiz. 19, 105. 
KELLY, P. L. 1965 Phys. Rev. Lett. 15, 1005. 
LIN, S. P. 1969 J .  Fluid Mech. 36, 113. 
LIN, S. P. 1970 J .  Fluid Mech. 40, 307. 
LIN, S. P. 1971 Phys. Fluids, 14, 263. 
MEI, C. C. 1966 J .  Alath. & Phys. 45, 266. 
NEWELL, A. C. & WHITEHEAD, J. A. 1969 J .  Fluid Mech. 38, 279. 
SEGEL, L. A. 1969 J .  Fluid Xech. 38, 203. 
STEWARTSON, K. & STUART, J. T. 1971 J .  Fluid Mech. 48, 529. 
TALANOV, V. I. 1965 Zh. Eks. Teor. Fiz. Pis. Red.  2, 233. (Trans. J .  Exp. Theor. Phys. 

PIH, C. S .  1963 Phys. Fluids, 6, 321. 
Lett. 2, 141.) 


